Circle theorems

Angles in same segment are equal

Theorems

Find angle x and y

Angle in same segment: $x=30^o$ and $y=30^o$

Angle at centre is twice angle at circumference

Find angle x

Angle at centre twice angle at circumference: $x=100^o$

Angles in semicircles are right angles

Find angle x

Angle in semicircle is 80° : $x + 10 + 90 = 180 \Rightarrow x = 80^{\circ}$

Radii meet tangents at 90°

The radius and tangent make angle x. Find x.

Radius meets tangent at 90° : $x = 90^{\circ}$

Perpendicular bisector to chord meets center

Line from center bisects chord to make angle x.

Perpendicular bisector to chord meets center: $x = 90^{\circ}$

Tangents to a point have equal lengths

AB and AC are tangents. Angle $CAB = 40^{\circ}$. Find angle ABC.

Alternate segment theorem

 60^o Find angle x

Alternate segment theorem: $x = 60^{\circ}$

Opposite angles in cyclic quads add to 180

Find angle x

Opposite angles in cyclic quadrilateral add to 180° : $x = 180 - 80 = 100^{\circ}$

Combo

OC is a radius of the circle. Angle $CAB = 35^{\circ}$. Find angle OCB.

Angle at center is twice angle at circumference: $COB = 70^{\circ}$.

Triangle COB is isosceles: $OCB = 35^{\circ}$.